
/Lllr .hmrnal q/ 7"/wrmoph.v.~'ic.~'. I'o1. 18, No. 4, 1997 

A Stochastic Approach to Nonequilibrium Chain 
Reactions in Disordered Systems: Breakdown of 
Eikonal Approximation 

M. O. Vlad 23 and J. ROSS 2"4 

A stochastic description o1" chain reactions occurring in disordered systems is 
suggested by considering a statistical distribution of time-dependent rate coef- 
ficients. Tile possibilities of constructing a thermodynamic ft~rmalism for non- 
equilibrium chain reactions are investigated by testing the validity of the eikonal 
approximation m tile thermodynamic limit. If tile Iluctuations of the rate coef- 
ficient are restricted to a finite range, then li/r large systems the probability of 
concentration Iluctuations obeys tile eikonal scaling condition, which makes 
possible the development of a nonequilibrium thermodynamic formalisnl. For 
an inlhlite range ot + variation of the rate coeMcient, however, the eikonal scaling 
does not hold anymore: the probability of concentration fluctuations has a long 
tail of the negative power-law type and tile system displays statistical fractat 
features. Tile passage from the stochastic eikonal behavior to the IYactal scaling 
is characterized by a change in tile deterministic kinetic equations of tile pro- 
cess: in the eikonal regime tile elTective reaction order with respect to tile active 
intermediate is I. whereas Ii+r fractal scaling it is equal to 2. Due to this change 
in the eflective reaction order for I'ractal sealing+ tile reaction is much Ihster than 
in the eikonal regime and tile explosion threshold may be reached alier a finite 
time interwd. 
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1. I N T R O D U C T I O N  

A number of thermodynamic and stochastic approaches have been 
suggested in the literature for the description of nonequilibrium processes 
[1-4] .  These theories start out from a stochastic description of a non- 
equilibrium process and try to establish a connection between the macro- 
scopic behavior of the system and the probability of fluctuations. The main 
assumption of these theories is that for a large system the probability of 
fluctuations at time t, P(X; t ) dX ,  corresponding to a set X=(X~ ,  X 2 .... ) of 
extensive macrovariables, obeys the scaling condition 

P(X; t) dX - exp[ - - Q J ( X / Q ;  1)] dX as f2 --+ ~ ( I ) 

where ,c2 is the size of the system, expressed in terms of volume, surface, 
or total number of particles, and J(X/f2; t) is a stochastic action similar 
to the action function from classical mechanics. The scaling condition, 
Eq. ( 1 ), is similar to the eikonal approximation from optics or to the WKB 
approximation from quantum mechanics. Equa t ion ( l )  was introduced by 
Kubo et al. [5] .  For the stochastic and thermodynamic theories of non- 
equilibriuna processes, Eq. ( 1 ) plays a role similar to Einstein's fluctuation 
formula from equilibrium thermodynamics, whereas the function .OJ(X/f2: t) 
plays the role of a stochastic thermodynamic potential similar to the 
entropy or the Gibbs or Helmholtz free energies. 

The possibility of constructing a nonequilibrium thermodynamic 
theory is generally limited to systems for which the scaling condition 
expressed by Eq. (1) is fulfilled. Equa t ion ( l )  fails to describe systems for 
which the large fluctuations have the main contribution to the temporal 
evolution of the process, because for systems obeying Eq. ( 1 ) the very large 
fluctuations, although possible, are exponentially rare. It follows that for 
the general understanding of the evolution of nonequilibrium processes, it 
is very important to know in what circumstances the scaling condition 
[Eq . (1 ) ]  may fail. A class of very simple processes for which an 
approximation of the type of Eq. ( 1 ) may not hold is made up of different 
types of chain processes, including chemical chain reactions. The general 
study of chain processes is not limited to the field of chemical kinetics; 
chain processes have been used for describing a broad class of natural 
phenomena fi'om physics, chemistry, and biology [6] .  For a chain process 
the fluctuations of the number of particles may play an important role, 
because the chain mechanism not only leads to the multiplication of the 
number of individuals but also amplifies the fluctuations. An alternative to 
the eikonal scaling, Eq. ( 1 ),is the statistical fractal scaling [7] ,  

P ( X ; t ) d X ~ [ f 2 / ( X / f 2 ; t ) ]  (~+n)dX as (2--+~,  H > 0  (2) 
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where H > 0  is a positive fractal exponent. A straightforward analysis 
shows that a chain reaction occurring in a homogeneous system and evolv- 
ing according to the stochastic version of the mass action law does not lead 
to a breakdown of the eikonal scaling Eq. (1), despite the occurrence of 
relatively large fluctuations. A chain reaction occurring in a disordered 
system, however, may lead to a fi'actal scaling of the type of Eq. (2) and to 
the violation of the eikonal approximation. For a disordered system the 
random structure of the medium in which the reaction takes place leads to 
a statistical distribution of the rate coefficients which become random 
variables. The population fluctuations are relatively large even for a 
homogeneous chain reaction: for a disordered system these fluctuations are 
further amplified by the random structure of the medium, resulting in a 
statistical fractal behavior described by Eq. (2). 

The structure of the article is the following. In Section 2 we give a 
mathematical formulation of the problem in terms of a compound 
master-Liouville stochastic equation and evaluate the probability of 
population fluctuations. Sections 3 and 4 deal with the eikonal and fractal 
scaling conditions, respectively. Section 5 deals with the determination of 
the effective deterministic kinetic equations. Finally, in Section 6 we discuss 
the main implications of the model. 

2. EVOLUTION EQUATIONS 

We consider a simplified description of a chain reaction taking place 
in a disordered medium. We assume that there is a single type of active 
intermediate and take into account only a propagation step of the type 

A + X  ~, 2X (3) 

where A is a stable species with concentration kept constant, X is the active 
intermediate, and k is an efl'ective first-order rate coefficient which is 
proportional to the concentration of the stable species A. The possibility of 
a thermal explosion generated by the accumulation of heat in the system 
is neglected and therefore the process is assumed to be isothermal. 

A chemical reaction occurring in a disordered system is characterized 
by two main features [8].  (a) Due to the disordered structure of the 
medium the motion of the reacting particles is very slow and therefore the 
rate coefficients are time dependent. (b) The random structure of the 
medium leads to a statistical distribution of rate coefficients. In this article 
we limit ourselves to the study of systems with static disorder, for which a 
structural fluctuation, once it has occurred, lasts tbrever, that is, in the 
system the disorder is completely frozen. As a result, the random structure 
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of the medium leads to an initial random distribution of the rate coefficient 
k. This initial distribution is characterized by a probability density 

q(k)  dl< with j q(k) dk  = 1 (4) 

The time evolution of the rate coefficient is described by the differen- 
tial equation [ 8 ] 

dk( t )/dt = - v( t ) k( t ) with k( t = O ) = k() (5) 

where the initial value k( t = 0 ) =  k~)is randomly selected from the probabil- 
ity law, Eq. (4), and c(t) is the fiequency of decay of the rate coefficient. We 
note that relationships of the type of Eq. (5) have been commonly used in 
chemical engineering for describing the process of catalyst poisoning [9] .  
Since the disorder leads to a decrease in the mobility of particles, the rate 
coefficient should be a nonincreasing function of time. In this article we 
consider two situations which fulfill this condition. (a) The decay frequency 
v(t) is equal to zero and thus the rate coefficient is time independent: 

k(t) = k independent of t for v(t) = 0 (6) 

(b) The decay rate v(t) tends to a value different from zero for large times, 

lim v( t )= v ( ~ ) ~ 0  (7) 
t - -  �9 

In this second case the rate coefficient at time t, 

[ " 1 k ( t )  = k,) exp - j,) v(t ')  dt' ( 8 ) 

decreases to zero for large times, 

lira k(t) = 0  (9) 

For describing the dynamics of the process we introduce the joint 
probability density 

q S ( N , k ; t ) d k  with ~ I q ~ ( N , k ; t )  d k = l  (I0) 
x." 

qS(N, k: t ) d k  is the probability that at time t the number of active inter- 
mediates is N and that the value of the rate coefficient is between k and 



Chain Reactions in Disordered Systems 961 

k + elk. By taking into account the above-introduced assumptions, we can 
derive an irreversible stochastic master-Liouville equation for ~(N, k; t): 

~--qS(N,k;t)= 0 [ v ( t ) k @ ( N , k : t ) ] + k [ ( N -  
(0t OK 

1) qs(N, k; t ) -  N~(N, k; t)] 

(11) 

with the initial condition, 

q~(N, k; t = 0) = r/(k) P(N; t =0)  

P(N; t) = j qs(N, k; t) dk with Z P(N; t)= 1 
N 

where 

(12) 

(13) 

is the probability that at time t the number of active intermediates is N. 
For solving the evolution equation, Eq. (11 ), we combine the method 

of characteristics with the technique of characteristic functions. We define 
the characteristic functions of (b(N, k; t) and P(N; t) as discrete Fourier 
transforms: 

G(b, k; t) = ~ exp(ibN) r k; t) (14) 
3; 

g(b; t) = ~ exp(ibN) P(N: t) (15) 
A' 

where b is the Fourier variable conjugate to the number N of active inter- 
mediates. By expressing Eqs. (11 ) and (12) in terms of the characteristic 
functions G(b, k; t) and g(b: t), we come to 

~G(b,k: t )=~--~[v( t )kG(b ,k; t ) ] - ik[exp( ib) - l ]  ~-~G(b,k;t) (16) 
~t 

G(b, k; t = 0) = g(b; t = 0) q(k) (17) 

The partial differential equation, Eq. (16), can be integrated along the 
characteristics. The solution corresponding to the initial condition (17) is 

G(b,k;t)=cp '(t)q[k~o-"(t)] g {/In {l-[l-exp(-ib)] 

xexp[k~o '(t)f(~o(t')dt']}; t=O} (18) 

X40 I~ 4-6 
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where 

[ 1 ~p(t) =exp v(t')dt' (19) 

is the coefficient of attenuation of the rate coefficient k at time t. The prob- 
ability P(N: t) of the number N of active intermediates at time t and the 
corresponding moments 

(N"'(t)) = ~  N"'P(N: t). m = 1, 2 .... (20) 
.\" 

can be evaluated from Eq. (18) by applying the equations 

1 �9 d \' t) P(n; t) = N-~.t j dk ~ G(b = - i  In - k'. 

" d "' 
( N'"(t)F=(-i)"' j dk-ff~, G(b=O,k; t) 

_- =0 

(21) 

(22) 

which can be easily derived fi'om the definition, Eq. (14), of the charac- 
teristic function G(b.k: t). By combining Eqs.(18), (21), and (22), we 
obtain 

(N-1)~  
P(N;t)=fdk,,q(k,~) ~ P ( N . . t = 0 )  

.\',,.> t ( N , , -  1)! ( N - N , , ) !  

x [2(k,,; t)] -v,, [1 - 2 ( / %  t)] x v. (23) 

t t l  1 

( N ' " ( t ) ) =  2 ~.(N"(t=O))  Z ' " Z  ( - 1 ) " '  z,,. $,,,x,,,,, 
= I I I i . . . . . t l , l ~  I 

N-- t i  n ~ t t t  

(Z"n")';q(k, ,)dk, ,expt(~n.)k, ,cp(t)  } (24) 
• I-I,, ,,,,-------T. 

where 

~J $,,, = ~ ( - 1 ) "  kk"' 

/r =0 

(25) 

are the Stirling numbers of the second kind and 

2(ko; t ) = e x p  ~o(t') dt' (26) 
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From Eq. (23) we notice that the probability distribution of the 
number of intermediates at time t is made up of the additive contributions 
of a number of negative binomials, corresponding to the different initial 
possible values of the rate coeMcient k(t = O)= k , .  

We distinguish at least two regimes for the evolution of chain reac- 
tions. (a) A "normal" process tor which all positive moments { N ' " ( t ) )  are 
finite for any finite time and the probability P(N; tt has a short tail; in this 
case we normally expect that the eikonal approximation. Eq. ( 1 I, holds. (b) 
A statistical fi'actal regime for which the moments ( N " ' ( t ) )  of order bigger 
than a certain positive threshold value H are infinite 

( N " ' ( t ) ) = ~ .  for m>~H (27) 

and the probability P(N;  t) has a long tail of the power-law type. 

P ( N ; t ) - c o n s t .  N ,~+m for N>>0 (28) 

which corresponds to the scaling condition, Eq. (2). The conditions for the 
occurrence of these two different regimes can be established by investigat- 
ing the behavior of the moments (N ' " ( t ) )  of the number of active inter- 
mediates at time t. 

3. EIKONAL SCALING 

We assume that the chain reaction starts out with a relatively low 
number N,, of active intermediates obeying the constraint 

1 <~Nt,<~N',', '~X, i.e., P(N>N'~',':'~; t = 0 ) = 0  (29} 

where the threshold value NI', .... of the initial number of active inter- 
mediates is much smaller than the typical number N(t) of intermediates at 
time t. In these circumstances all sums in Eq. (24) are made up of finite 
numbers of terms and the only possible source of divergence for ( N ' " ( t ) )  
is given by the integral over the initial values k(t = 0 ) = k , ,  of the propaga- 
tion rate. 

If there is a finite range lbr the initial value of the reaction coefficient 

k ...... ~> k,  > /O,  where k ...... = finite (30) 

the integral over k ( t =  O)= k(, in Eq. (24) is normally finite; indeed, q(ko) is 
a probability density for k, and cannot normally produce a singularity in 
the integral; similarly, the exponential term exp[(Zn, , )~o( t )k . ]  does not 
lead to a divergence for finite values of the initial rate constant k,,. If the 
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restriction, Eq. (30), is fulfilled, then the shape of the tail of the probability 
P(N: t) can be easily evaluated. We have 

. . . .  { L l} P(N:,)-j',lk,,,t(k,,) Z P ( N , , ; t = O ) e x p  N,,ln l ~ . ~ , t ) J  
"\'O ~ I 

N % x - -exp{ -Nln[ ( l - / , ( k , , , t ) )  n]} for N>NI ' }  ''~ 
(N,~- 1 )! (31) 

that is, for N>> NI' , .... the probability distribution of the number of active 
inte,'nlediates, P(N:  t), is given by a superposition of gamma distributions 
obeying a scaling condition similar to the KNO scaling law from nuclear 
physics [ 10]. In particular, if there is only a single value k.  of the initial 
infection rate, the tail of the probability distribution P(N; t) is given by 

P(N; t) .v,': .... {N,, [ 1 - 2 ( k . , t ) J f  
2 P ( N , , ; t = O ) e x p  11, 2 ( k . , t )  ]]  

. \ 'q~ = I 

N \,, I 

x - - e x p [ - N l n [ ( l - 2 ( k o ,  t)) ']} for N > N I '  , .... 
(N,,- 117 

(32) 

that is, it is an exponential modulated by a polynomial in N. For large 
values of the number N of particles the exponential term outweighs the 
contribution of the polynomial and the scaling condition, Eq. (32), is 
equivalent to the eikonal scaling (1.1). This conclusion can be easily 
extended to the more general expression, Eq. (31), for which, in the limit 
N > N'}, '~'X, the integral over ko can be evaluated by means of the method 
of steepest descent, resulting in an expression similar to Eq. (32), and thus 
the eikonal scaling still holds. 

4. STATISTICAL FRACTAL SCALING 

For systems obeying the restrictions, given by Eqs. (29) and (30), the 
only possibility for the occurrence of statistical fractal scaling is that there 
are no restrictions concerning the maximum initial value of the rate coef- 
ficient: 

k ...... ~ (33) 

In this case in Eq. (2.22) the integral over k,  may diverge. A typical situa- 
tion is the one in which very large values of the initial propagation rate 
may exist and their probability of occurrence is exponentially rare, that is, 
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the tail of the probability density pl(k) has an exponential shape. For sim- 
plicity we assume not only that the tail of q(k) has an exponential shape, 
but also that the whole function does: 

Jl(k) = (ko)  t e x p ( - k / ( k , , )  ) (34) 

where 

(k, ,)  = f kq(k) dk (35) 

is the average value of the initial rate coefficient. The distribution, Eq. (34), 
is commonly used in studies of reaction kinetics in disordered systems. 
Note that it is the most unbiased distribution of the initial rate coefficients 
consistent with the constraint given by Eq. (35). Equation (34) may be 
derived by searching for the extremum of the information entropy attached 
to the probability density ~/(k). 

.Yg = --j" q(k) ln[q(k) Ak] dk (36) 

subject to the constraint (35). 
If the distribution q(k), of the initial rates is given by Eq. (34), then the 

integrals over k,, in Eqs. (23) and (24) can be computed exactly. By com- 
bining Eqs. (23), (24), (33), and (34), we obtain 

x,': .... ( N -  1 )! F[N,, + H( t)] 
P(N; t )=H( t )  Y. P ( N o ; t = 0 )  (37) 

.\.,=~ ( N , , -  1)! F[N+ 1 + H ( t ) ]  

t JI 

(N" ' ( t ) )=  y. _1 (N" ( t=O))  Z Z  ( - 1 )  . . . . . . .  - x  $,7' ..... ' 

(Z  n,,)! H(t) 
X for m < H(t) (38) 

I-In.! [ H ( t ) -  Y~ n,,] 

where 

( N ' " ( t ) = , v 2  for m~>H(r) (39) 

where 

/40, 
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is the complete gamma function and 

.! 

H ( t ) = [ ( K , , )  j q)(t')dt'] ' 141) 
II 

It is easy to check that Eq. (37) has a long tail of the negative power-law 
type: 

t '':S FEN,, + H( t)] ~ P ( N ; t ) -  P(N, , ; t=O)H(t )  ( ~ - - ~ .  j N IH,,,, ,1 
.V I 

for N >> NI' , .... (42) 

Equation (42) has the same structure as Eqs. (2) and (28). with the dif- 
ference that now the parameter H is not an arbitrary scaling exponent but 
a function of time given by Eq. (42). 

From the above calculation it follows that an exponential distribution 
of the initial rate coefficient leads to the violation of the eikonal condition 
( 1 ) and to a statistical fi'actal scaling of the type of Eq. (2). In Eq. (33) the 
reciprocal value 1/H(t) of the exponent H(t) is a measure of the statistical 
fractal character of the probability distribution P(N; t): the bigger l/H(t). 
the more pronounced are the statistical fi'actal features. For t = 0 the fi'actal 
exponent H is infinite 

H(t =O}= oc i.e.. l/H(t =Ot=O (43) 

all positive molnents ( N " ' ( t = 0 ) )  are finite and the statistical fractal 
features are nonexistent. As the chain reaction is going on, the time integral 
~, q~(t')dr' increases fi-om zero to increasing positive values, the fractal 
exponent H(t) decreases, the tail of the probability P(N; t) becomes longer 
and longer and more and more moments ( N " ' ( t ) )  become infinite. When 
the condition, Eq. (7), is fulfilled the integrand cp( t' ) has an exponential tail 
and thus the integral I,; ~o(t')dt' exists and is filaite; the corresponding 
fractal exponent is the smallest one, 

I Jl/ 1 0 < H ( ~ ) =  (K~) ~o(t')dt' < H ( t )  (44) 

In this case for large times a stationary probability of the number of active 
intermediates emerges in the limit t --+ ~ ,  

"','; .... ( N -  1 )! F[N, ,  + H( ~ )] 
P(N; m ) = H ( ~ )  Z P(N,,;t=O) (45) 

.v,=~ ( N , , -  1)! F [ N +  1 + H(c,::)] 

for which the statistical fractal features are the most pronounced. 
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5. KINETIC EQUATIONS 

A typical feature for chemical reactions in disordered systems is that, 
for them, a purely deterministic description is generally incomplete. This 
type of behavior is clearly displayed by the fractal scaling regime studied in 
the preceding section. For fractal scaling the moments of the number N(t) 
of the active intermediates X with an order m at least equal to the scaling 
exponent H(t) are divergent (N ' " ( t ) )=~ ,  m>~H(t). In particular, the 
average value (N(t))  is finite only if H(t) > 1. From Eqs. (24) and (34) we 
obtain 

(N(t = 0 ) )  
( N ( t ) ) - - l _ ( k , , ) i i ,  exp[_~{iv(t,,)dt,,]dt, for H ( t ) > l  (46) 

( N ( t ) )  = ~ for H(t) ~< 1 (47) 

It is easy to check that the expression. Eq. (46), is the solution of an effec- 
tive kinetic equation which is of second order with respect to the average 
value ( N(t)), 

d(N(t)~ _ (k( t))  (N(t))~- lot ( N ( 0 ) )  50, H(t)> 1 (48) 
dt ( N( 0 ) } 

where (k( t)}  is the ensemble average of the propagation rate at time t, 

(k( t))  =J k(t) q(k(,) dk(,= (k,,) exp - v(t') dr' 49) 
II 0 

On the other hand, for an ordered system lbr which the propagation 
rate is time independent and nonrandom, 

( k ( t ) } = ( k , , } = c o n s t a n t ,  v=0 ,  and q(k )=O(k- (ko} )  (50) 

the average value (N( t )}  increases exponentially in time, 

(N( t )}  = (N(0)}  exp((k()}t) (51) 

which corresponds to a kinetic equation of first order, 

d( N(t) }/dt = ( k()}( N(t) } (52) 

From the above computation it follows that the passage from the 
eikonal to the fractal scaling regime corresponds to a passage from an overall 
kinetic equation of the first order to a kinetic equation of the second order. 
For a second-order process the increase in time of the number of active 
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intermediates is much faster than in the case of a first-order process charac- 
teristic for homogeneous systems. This effect is due to the contribution of 
very large propagation rates: although according to Eq. (34) very large 
rates are exponentially rare, their contribution leads to the modification of 
the dynamical behavior of the process. In addition to the random distribu- 
tion of the initial propagation rates, a second feature of a reaction taking 
place in a disordered system is the decrease in time of the rate coefficient, 
which tends to diminish the contribution of very large initial rates. The 
balancing between these two opposite factors, the random selection of large 
initial rates, which are exponentially rare, and their decrease in time, may 
lead to interesting effects. 

For investigating the effects of balancing of the two factors influencing 
the values of the rate coefficient, we limit ourselves to the particular case 
when the frequency of decay of the rate coefficient is constant, 

v( t ) = v. constant ( 53 ) 

In this case the relative influence of the two factors is characterized by the 
ratio 

)~ = v . /  < k,,) (54) 

between the frequency of decay v. and the initial average value (k . , )  of the 
propagation rate: the numerical value of ,;, characterizes the relative inten- 
sity of the damping of the initial values of the propagation rate. Depending 
on the numerical value of the damping parameter 2, we distinguish the 
following cases. 

(a} If the damping of the propagation rate is missing, then 

v . = 0 ,  i.e., ) , = 0  (55) 

and there is no decrease in the values of the propagation rate. A given 
realization of the propagation rate coefficient k, once it is initially selected 
from the exponential probability density, Eq. (34), remains constant. In this 
case the statistical fractal features of the system are the most pronounced. 
The expressions for the average number of active intermediates ( N ( t ) )  and 
for the scaling exponent H(t) are 

<N(t)> = <N(O)>/[1 - <k.> t] (56) 

H ( t ) =  1/[ (k..> t] (571 
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The hyperbolic law. Eq. (56), leads to an increase in the average number 
of particles < N( t ) )  which is laster than the one predicted by the exponen- 
tial law, Eq. ( 51 }. According to Eq. (56 t the average number of active inter- 
mediates ( N ( t ) )  diverges to infinity after a finite time interval equal to the 
reciprocal value of the average propagation rate: 

< N ( t ) ) ~ . z  as t~t~t.i,,~,, ~ with t~.~i~;,t=l/<k~,) (58} 

which, as expected, corresponds to a scaling exponent H(t) equal to unity, 
H(t,.,.~,~c~,) = 1. For comparison, we mention that in the case of exponential 
law. Eq. (51). <N( t ) )  diverges to infinity only for t --* ~z.. 

(b) For slow (supercritical) damping we have 

( k . )  > v.>O, i.e., 1 > ) , > 0  (59) 

and the expressions for the average number of active intermediates ( N ( t ) )  
and for the scaling exponent H(t) are given by 

( N(0 )) % exp( v,, t) 
( N ( t ) )  = (60) 

( k . )  - ( < k,. ) - v.) exp{ % t ) 

v. exp( % t ) 
H(t)  = (6I) 

<k.> [ e x p ( % t ) -  I ] 

In this case the contribution of the process of decay of the rate coefficient 
is smaller than the contribution of very large initial rates. As a result, the 
average number of active intermediates diverges after a finite time interval; 
the only difference is that the critical time is longer than in the case corre- 
sponding to 2 = 0, 

( N ( t ) ) ~  as t--*t~,.iti~,, with t~.,.i,~,l=--ln > - -  r,, < / , - .  > - v,. </,',, > 

(62) 

(c) For critical damping we have 

v,, = ( k , , ) ,  i.e.. 2 = 1 (63) 

In this case the contribution of very large initial rates is compensated 
exactly by their decay and the time evolution of the average value < N(t))  
is given by the exponential law, Eq. (51), characteristic for homogeneous 
systems. In this case ( N ( t ) )  diverges to infinity after an infinite time 

interval. 
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(d) For fast (subcritical) damping we have 

v . > ( k . ) ~ > 0 ,  i.e., 2 > 1  (64) 

and the expressions for the average number of active intermediates ( N ( t ) )  
and tbr the scaling exponent H(t) are given by 

(N(0 )}  v. 
(N( t )}  = (65) 

v .  - ( k.  } [ 1 - exp( - v. t ) ] 

H ( t ) -  (66) 
( k . } [  1 - exp( - v , , t ) ]  

In this case the contribution of damping outweighs the contribution of very 
large initial rates and the process is even slower than in the critical case (c) 
characterized by ), = 1. In the limit of large times, t ---, ,m, the average num- 
ber of active intermediates ( N ( t ) )  and the scaling exponent H(t )  tend 
toward finite values: 

( N( :~ ) } = 
(N(O))  v,,. 
v , , -  ( k , , )  ' 

H( m ) = 2 = v../( k , , )  > 1 (67) 

By examining Eq. (65) we note that in this case the average number of 
active intermediates. ( N ( t ) ) .  evolves according to a logistic equation. 

It is interesting that all these four cases can be derived from a unique 
deterministic kinetic equation which, unlike the relationship (48), depends 
only on apparent rate coefficients which are independent of time. We 
emphasize that the derivation of such a kinetic equation is possible only 
when the attenuation frequency is constant, t ' ( t )= v.. For deriving this 
kinetic equation we differentiate with respect to the time variable Eqs. (51). 
(56). (60). and (65) for ( N ( t ) )  and eliminate the time variable from the 
resulting equation by expressing it in terms of ( N ( t ) ) .  After some calcula- 
tions we obtain the overall kinetic equation: 

d ((k.)  -v,,) 
- -  ( N( t )  ) = v,,( N( t )  ) + ( N( t )  ) 2 (68) 
dt ( N ( O ) )  

For v(t) = v. Eqs. (48) and (68) are equivalent to each other. Equation (68) 
has the advantage that it does not contain time-dependent apparent rate 
coefficients and thus it has a structure similar to that of the evolution equa- 
tions of homogeneous chemical kinetics. 

In case (a), the damping process is missing, 2 = 0, and Eq. (68) reduces 
to a kinetic equation of second order with respect to ( N ( t ) ) ;  such an equa- 
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tion corresponds to an equivalent homogeneous propagation process of 
second order with respect to the active intermediate X, 

A + 2 X  k' ,3X (69) 

where the apparent rate coefficient k' is given by 

k ' =  ( I % ) / ( N ( O ) )  (70) 

In case (b), 1 >) ,>0 ,  the damping of the propagation rate is slow 
(supercritical) and Eq. (68) corresponds to an equivalent homogeneous 
reaction mechanism of the type 

A + X  '"', 2X;  A + 2 X  J'",3X (71) 

with 

k"  = ( ( k(,> - v,))/(N,,) (72) 

that is, to two propagation steps of first and second order with respect to 
the active intermediate, respectively. 

In case (c), 2 = 1, the damping process is compensated by the very 
large initial values of the propagation rate and Eq. (68) corresponds to an 
equivalent homogeneous propagation reaction of first order in X, 

A + X  .k,,>>2X (73) 

In case (d), 2 > 1, the damping process outweighs the contribution of 
very large initial rates and the equivalent homogeneous mechanism corre- 
sponding to Eq. (68) is 

with 

A + X "", 2X; 2X k.,' products (74) 

k'" = (v,) - ( k,, ) ) / (  N(O ) ) (75) 

The equivalent homogeneous mechanism, Eq.(74), is made up of a 
propagation reaction of first order with respect to X and by a second-order 
termination reaction. 

The above analysis shows that the key factor in determining the 
kinetic behavior of the average number of active intermediates is the damp- 
ing parameter 2. Very small changes in this parameter may generate major 
changes in the evolution of the chemical process. This fact is clearly 
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Fig .  I.  T h e  d e p e n d e n c e  o f  t he  r c l a t i x c  a v e r a g e  n u m b e r  o f  

uc l i xe  i n t e r m e d i a t e s  . ' ((  . ' , ' i l l . ' .  v A'{0 I ; .  o n  the  d i m e n s i o n l e s s  

t i m e  ~ a r i a b l e  r = e k , , '  t I A)  Ibr  a p r o c e s s  w i t h  n o  d a m p i n g  

I ,:. = 0 ) a n d  I B ) Ib r  a p r o c e s s  w i t h  s l o w  d a m p i n g  ( ,;. = 0.1 ). 

illustrated by Figs. 1 and 2. Figure I shows the time evolution of the 
ratio <N(tI>/<N(O}> as a thnction of the dimensionless time variable, 
r=<k,,> t for a system with no damping, 2 = 0 ,  and for a system with 
small damping, ), = 0.1. respectively. This small variation in the damping 
coefficient slows down the reaction and leads to a time delay in the 
occurrence of the explosion. A similar pattern is displayed in Fig. 2, which 
shows the time dependence of the ratio <N(tI>/<N(O)> for a system with 
critical damping characterized by ). = 1 and for which the number of par- 
ticles increases exponentially and for a system with subcritical damping 
characterized by a slightly larger value of the damping coefficient, ), = 1.05, 
for which the ratio <N(t)>/<N(O)> evolves toward a finite asymptotic 
value. 

Figure 3 shows the dependence of the relative rate of the process, 
<fil(t)>/(<k,><N(O)>) as a function of the ratio <N(t)>/<N(O)> for dif- 
ferent values of the damping coefficient 2 corresponding to the tbur cases 
discussed belbre. We notice that the increase in the damping coefficient 2 
leads to the decrease in the rate of the process. For 2 = 0 the rate of the 
process is proportional to the square of the number of particles, whereas 
for the compensated regime corresponding to )~= 1, the parabolic 
dependence is replaced by a linear dependence. Finally, lbr last damping, 
2 > 1, the attenuation of the rate coefficient is rate determining and the rate 
of the process is an increasing function only lbr small values of the ratio 
< N(t) >/< N(0 ) >; as the number of X particles increases, an extremum point 
is reached for which the rate of the process has a maximum value; 
atterward the rate decreases toward the final value of zero, 
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Fig. 2, Tile dependence of the relative a~cragc number  of 
active intermediates .Y,~ N( t )), ( N(O)}, on the dimensionless 
time variable r = (k,,~, t (A)  Ik~r a process with no damping 
12 = 1.001 and (B) for a process x~ith slow damping 12 = 1.051. 

The above analysis shows that lbr a chain reaction in a disordered 
systems the macroscopic evolution of the system is deeply influenced by the 
fluctuations dynamics. The evolution equations, Eqs. (48) and (68), for the 
average number of active intermediates are in lhct renormalized macro- 
scopic equations [11] which describe the influence of the fluctuation 
dynamics on the macroscopic behavior of the system. An interesting feature 
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Fig. 3. The dependence of the relati\e reaction rate. 
(,, '~(t)) I ( l q , ) ~ N I 0 } )  } on the relative average number  of active 

intcrnaediates .V, (.VII}.) (NIOL) .  Ibr/ .  = 0  {A}, 2 = 0 . 5  (B), ,;. = I 

(CJ. and 2 = 2  IDI.  
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of the models described by Eqs. (48) and (68) is that they may lead to 
explosion after a finite time. A chain reaction model with a similar behavior 
has recently been suggested by Cerofolini for the description of adsorption 
kinetics on reconstructable surfaces [12]. Further research should clarify 
the possible connections between our approach and Cerofolini's model. 

6. CONCLUSIONS 

In this article a simple stochastic description of a chain reaction 
occurring in a disordered system has been suggested in terms of a com- 
pound master-Liouville equation. It has been shown that in certain cir- 
cumstances, the behavior of the system in the thermodynamic limit is 
described by a scaling condition of the statistical fractal type. For fractal 
scaling the nonequilibrium thermodynamic formalisms suggested in the 
literature [ 1~-] are not valid. In this article we have investigated only the 
effect of dynamical disorder on macroscopic behavior. Further research 
should lead to the development of a nonequilibrium thermodynamic for- 
malism for which the fractal scaling condition (1.2) should play a role 
similar to the Einstein fluctuation formula in equilibrium thermodynamics. 
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